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Abstract

Aim: Conservation planning requires the prioritization of a subset of taxa and geographical

locations to focus monitoring and management efforts. Integration of the threats and opportunities

posed by climate change often relies on predictions from species distribution models, particularly

for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species

distribution models could reliably rank changes in species range size under climate and land use

change.

Location: Conterminous U.S.A.

Time period: 1977–2014.

Major taxa studied: Passerine birds.

Methods: We estimated ensembles of species distribution models based on historical North

American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to

recent years given c. 35 years of observed land use and climate change. We evaluated model pre-

dictions using standard metrics of discrimination performance and a more detailed assessment of

the ability of models to rank species vulnerability to climate change based on predicted range loss,

range gain, and overall change in range size.

Results: Species distribution models yielded unreliable and misleading assessments of relative

vulnerability to climate and land use change. Models could not accurately predict range expansion

or contraction, and therefore failed to anticipate patterns of range change among species. These

failures occurred despite excellent overall discrimination ability and transferability to the validation

time period, which reflected strong performance at the majority of locations that were either

always or never occupied by each species.

Main conclusions: Models failed for the questions and at the locations of greatest interest to

conservation and management. This highlights potential pitfalls of multi-taxa impact assessments

under global change; in our case, models provided misleading rankings of the most impacted

species, and spatial information about range changes was not credible. As modelling methods and

frameworks continue to be refined, performance assessments and validation efforts should focus

on the measures of risk and vulnerability useful for decision-making.
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1 | INTRODUCTION

Climate change impact assessments can be used to direct monitoring

and management towards the taxa that are expected to pose invasion

risks or face population declines under climate change, and to inform

spatial management and reserve design priorities. Assessments of

species vulnerability to climate change have typically been based on

species traits and/or quantitative models of physiology, demography,

or distributions (Pacifici et al., 2015). For assessments of many taxa,

correlative species distribution models (SDMs) have been (Guisan &

Thuiller, 2005) and continue to be (Evans, Merow, Record, McMahon,

& Enquist, 2016) the predominant tool used to evaluate broad-scale

climate change impacts by projecting future distributions (Langham,

Schuetz, Distler, Soykan, & Wilsey, 2015; Thuiller, Richardson et al.,

2005). The ease of implementation and the ability to produce spatially

explicit projections have led to the continued use of SDMs despite

longstanding questions about their biological realism and reliability

(Bahn & McGill, 2007; Pearson & Dawson, 2003). The integration of

predictions from SDMs into conservation planning faces several chal-

lenges, including perceived relevance and reliability for conservation

and management decision-making (Guisan et al., 2013; Sinclair, White,

& Newell, 2010). An outstanding question is whether common summa-

ries used to represent species vulnerability and risk provide a reliable

basis for conservation prioritization.

Validation of model projections under climate change is inherently

difficult because we do not know the future. Studies have used simula-

tions (e.g., Elith & Graham, 2009), fossil records (e.g., Maguire et al.,

2016) and long-term data or temporal partitioning (e.g., Ara�ujo,

Pearson, Thuiller, & Erhard, 2005; Brun, Kiørboe, Licandro, & Payne,

2016; Mor�an-Ord�o~nez, Lahoz-Monfort, Elith, & Wintle, 2017) to test

model assumptions, identify reliable approaches, and validate predicted

distributional patterns. Results of these validation studies have been

mixed, with both optimistic and pessimistic findings regarding model

transferability. However, model evaluations have largely focused on

discrimination performance rather than on the metrics used to summa-

rize relative vulnerability, primarily proportional range loss and change

in range size. Overall discrimination may be an insufficient performance

metric because accuracy at sites where range gain or loss occurred can

be lower (perhaps much lower) than at consistently occupied or unoc-

cupied locations (Rapacciuolo et al., 2012). Although climate-induced

range shifts are increasingly observed (Chen, Hill, Ohlem€uller, Roy, &

Thomas, 2011) and, in turn, affect ecosystem function and services

(Pecl et al., 2017), it remains unclear whether SDMs can anticipate

these shifts and reliably sort species by their relative climate change

vulnerability. If so, then the use of multispecies correlative SDMs in

management planning would be supported. Indeed, consistent bias in

projections of absolute range change may be tolerable provided that

vulnerability rankings are consistent and reliable (Wright, Hijmans,

Schwartz, & Shaffer, 2015), as these rankings would still identify

species that should receive monitoring or management priority.

We used a long-term dataset of North American birds, the

Breeding Bird Survey (BBS; Pardieck, Ziolkowski, & Hudson, 2015), to

test the ability of distribution models to generate reliable rankings of

species vulnerability and risk under climate change. We fitted ensem-

bles of SDMs to historical presence–absence data and generated pre-

dicted occurrences in recent years based on c. 35 years of observed

climate and land use change. We compared avian survey data in recent

years with model predictions, focusing on a set of 512 routes that

were consistently surveyed in both the historical and the recent period.

We compared predicted and observed patterns of range loss and

change in range size, and evaluated model accuracy under different

methodological decisions. Our analyses focused on the following ques-

tions: (a) can models consistently identify the most vulnerable species;

and (b) can models predict where range expansion and contraction are

likely to occur?

2 | METHODS

We summarized occurrence of passerine bird species at BBS routes in

the conterminous U.S. during historical (1977–1979) and recent

(2012–2014) periods. We used 3-year periods to minimize the effects

of imperfect detection, such that only routes surveyed for all three

years contributed absences for each time period. The selected years

were chosen to provide a continental extent and a large number of

routes that were surveyed in all years, while maintaining a long interval

between historical and recent periods. We considered a species pres-

ent on a c. 40 km roadside route if it was detected on at least one stop

(out of 50 systematically arranged stops) in at least one of the 3 years.

Validation routes (n5512) were defined as those that were surveyed

during all 6 years of the historical and recent periods (Supporting Infor-

mation Figure S1) and were used to compare predicted and observed

changes in species presence. Our analysis was limited to the 190 pass-

erine species that were detected on at least 30 routes during the his-

torical period and on at least 10 of the validation routes during either

time period.

We evaluated how model accuracy was affected by methodologi-

cal decisions regarding the selection of climate covariates, the inclusion

of land use covariates, and the spatial extent at which species absences

were included in model estimation. We developed three groups of

climate covariates based on annual, quarterly or all bioclimatic variables,

and estimated models with only climate covariates and with both

climate and land use covariates (Supporting Information Table S1). We

extracted climate and land use covariates within allometrically sized

buffers surrounding each route centroid (see Supporting Information

for details of these and other methods and for comprehensive results).

Bioclimatic covariates were based on PRISM data (PRISM Climate

Group, 2014), using a 4-year time period corresponding to each set of

avian observations and the prior year, to capture potential lag effects.

Land use covariates were the proportion of the buffer surrounding

each route in developed and conservation or low human use classes

based on the 1974 and 2012 versions of the U.S. conterminous wall-

to-wall anthropogenic land use trends dataset (NWALT; Falcone,

2015). The NWALT dataset was selected because it was designed to

estimate land use change. For each covariate set, we fitted models

based on two versions of the response dataset; both versions included
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all routes where a given species was present historically. In one case,

absences from routes across the conterminous U.S. were included, and

in the other case, absences were geographically restricted to routes

within 600 km of a historically occupied route. Data are available online

(https://doi.org/10.5066/F7NS0S4R).

We estimated ensembles of distribution models for each species

based on eight correlative modelling methods suitable for presence–

absence data using the BIOMOD2 (Thuiller, Georges, Engler, & Breiner,

2016) package in R (R Core Team, 2016). These correlative modelling

approaches were regression- or tree-based methods, including those

found to perform well (Elith et al., 2006); MAXENT was not included

because we had presence–absence data, rather than only presences.

Models were fitted with historical data and predicted to historical and

recent years; we developed an ensemble by weighting predictions pro-

portionally by the area under the receiver operating characteristic

curve (AUC; Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009).

Continuous predictions were thresholded to binary predictions by max-

imizing sensitivity plus specificity in cross-validation. To evaluate

whether poor calibration might underlie problems with predicting rela-

tive vulnerability, we also thresholded continuous predictions using the

optimal cut-off point for each period (which studies would not know in

practice for the future).

Species vulnerability was quantified as the proportional range loss

and change in range size (i.e., change in the number of occupied routes,

considering both loss and gain), which were calculated based on the

512 validation routes. These metrics of vulnerability are commonly

used for assessing species-level climate change impacts (Broennimann

et al., 2006; Buisson, Thuiller, Casajus, Lek, & Grenouillet, 2010;

Erasmus, Van Jaarsveld, Chown, Kshatriya, & Wessels, 2002; Thuiller,

Lavorel, Ara�ujo, Sykes, & Prentice, 2005). Observed change in range

size was correlated with BBS estimates of species population trends

(Sauer et al., 2014), indicating that this metric captured observed popu-

lation trajectories (Supporting Information Figure S2).

For each set of methodological decisions (i.e., estimation area,

climate covariates, and inclusion of land use; Supporting Information

Table S1), we ranked predictions of relative vulnerability among spe-

cies. To compare performance among model ensembles based on these

different decisions, we calculated the absolute value of the difference

between predicted and observed range loss for each species and each

set of model predictions, and fitted generalized linear models to evalu-

ate the effects of different methodological decisions (see Supporting

Information; Methods). Likewise, we modelled how methodological

choices affected the magnitude of the difference between the pre-

dicted and observed change in range size.

Species distribution models provide spatially explicit predictions of

habitat suitability, which can be used to inform spatial conservation

planning decisions. We evaluated whether model ensembles could

identify the locations where range gain and loss occurred. For each

species, we selected the set of survey routes that were observed to be

historically occupied and which had the lowest predicted suitability in

the recent period; across species, we then tested whether more of

these routes showed range contraction, rather than stable occupancy

(see Supporting Information; Methods). To evaluate whether the

predicted direction and magnitude of range shifts aligned qualitatively

with observations, we compared the geographical coordinates of the

centre of occupied validation routes for observed and predicted range

shifts between the historical and recent time periods. We also visual-

ized predictive ability relative to multivariate climatic dissimilarity

(Mahalanobis distance) from historically occupied routes; this was used

to evaluate whether prediction was most difficult at climatically mar-

ginal versus climatically distant survey routes.

Finally, we evaluated whether variation in model performance for

range loss and range change could be explained by variation in four

species attributes: the size of each species’ breeding and resident range

in the conterminous U.S.A. (in square kilometres); the proportion of the

total breeding and resident range located within the conterminous U.S.

A.; estimated long-term population trend based on BBS data (Sauer

et al., 2014); and migratory strategy (neotropical migrant, short-

distance migrant, or resident). We predicted that model performance

would increase with a larger proportion of the species’ range within the

conterminous U.S.A. because estimation would encompass more of the

species’ occupied environmental conditions. We predicted better

performance for resident species compared with migrants, because

migrants can be limited by processes during non-breeding periods that

would not be captured by breeding area land use or climate change.

Predictions regarding total range size and population trend were less

straightforward; for example, discrimination can be poor for wide-

ranging generalist species (Evangelista et al., 2008; Hernandez, Graham,

Master, & Albert, 2006), but conversely, metrics of range loss and

range change may be noisy for species with few validation routes, and

the risk of overfitting may increase for species with restricted ranges

(Thorne et al., 2013).

3 | RESULTS

Predicted range loss and change in range size were highly sensitive to

modelling decisions regarding the selection of covariates and the

geographical extent from which absences were drawn (Supporting

Information Figure S3). Predictions from model ensembles based on a

covariate set that included annual climate and land use, and a model

estimation extent that included absences from routes across the

entire conterminous U.S.A., showed the smallest differences between

observed and predicted vulnerability across all species (see Supporting

Information for model performance comparison: Figures S4 and S5;

Table S1). Based on this model set, we explored the ability of the

ensemble to predict relative vulnerability among species and to identify

the routes where range loss and gain occurred.

Species distribution models showed a striking inability to identify

which species were observed to have the greatest range loss or change

in range size between the historical and recent periods (Figure 1).

Nevertheless, the performance metrics typically used to validate SDMs

yielded a favourable view of model performance and transferability.

Model ensembles generally showed excellent discrimination ability,

even when using temporally independent validation routes to estimate

model performance (median AUC for predictions to recent years was
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0.96 for focal model set; Supporting Information Figures S5 and S6).

Discrimination performance during the recent period remained high

when excluding distant absences that could lead to overly optimistic

performance assessments (Supporting Information Figure S6; median

AUC50.92).

Model ensembles did not capture relative vulnerability among

species because of systematic failures to predict observed changes in

occupancy correctly. Specifically, binary predictions for the recent

period were usually correct for routes that were always or never

occupied by a given species, but were usually wrong for routes

where a gain or loss of occupancy was observed (Figure 2). Binary

predictions often indicated that a focal species would always or

never occur at locations where gain or loss was observed (Figure 2a).

Model performance evaluations focused on predictions to geographi-

cally restricted validation routes (see Supporting Information

Methods; model estimation was based on the conterminous U.S.A.)

to ensure that performance metrics were not inflated by distant

routes with true absences (Lobo, Jim�enez-Valverde, & Real, 2008).

Poor model calibration could also not explain these differences fully,

because applying the optimal threshold for each period improved

predictions for the most prevalent species but did not align overall

predicted and observed vulnerability ranks (Supporting Information

Figure S7).

Of each species’ historically occupied routes, those with the lowest

predicted suitability in recent years were no more likely to be lost than

to remain occupied; likewise, the routes predicted to be most suitable

among observed historically unoccupied routes were no more likely to

be gained than to remain unoccupied (see Supporting Information

Results). Failure to identify correctly those locations where species

experienced range contraction or expansion led to unreliable predic-

tions of the direction and magnitude of shifts in the centre of each spe-

cies’ occupied range (Figure 3; Supporting Information Figure S8).

Model predictions were often incorrect for routes at intermediate

climatic distances to a species’ historically occupied range, whereas

routes with climate distances ‘far’ from the historically occupied range

were often correctly predicted to be consistently unoccupied

(Figure 4). Distribution model performance for both range loss and

range change was lower for species with smaller range sizes, and

declining species also showed lower performance for range loss

(Supporting Information Figure S11; Supporting Information Results).

FIGURE 1 Model predictions of range loss and change in range size were not consistently related to observed patterns of loss and change
in range size across species. Each point represents a species, with point sizes scaled according to the observed number of occupied
validation routes during the historical period. A positive correlation would be seen in each panel if models correctly identified the most
vulnerable species. Species ranks were calculated such that one represented the most vulnerable species (i.e., greatest proportional range

loss, greatest relative decline in range size). Results are shown for models estimated using absences from the entire conterminous U.S.A.,
with the set of annual climate covariates and land use
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4 | DISCUSSION

Species distribution models have been a primary tool in multispecies

climate change impact assessments that aim to identify taxa in need of

monitoring and management attention (Langham et al., 2015; Thuiller,

Richardson et al., 2005). Our results were consistent with previous

findings that SDMs have good to excellent discrimination ability in new

time periods (Ara�ujo et al., 2005; Mor�an-Ord�o~nez et al., 2017), but

highlight a striking inability to translate this performance into reliable

predictions of relative range expansion and contraction among species

(Figure 1). Prediction was most difficult in locations where range

contraction or expansion was observed (Figure 2), yet these areas of

environmental and geographical space are of great interest for manage-

ment and conservation under climate change. The finding that model

ensembles could not identify the survey routes most likely to be gained

or lost (see Supporting Information Methods and Results) suggests that

output from correlative SDMs based on generic covariates across spe-

cies may have limited utility for the identification of vulnerable species

and the incorporation of climate projections into spatially explicit con-

servation planning.

The failure of SDMs to predict vulnerability could reflect one of

the major assumptions inherent in distribution modelling, which is that

species ranges are limited by climatic and other variables included in

the model covariate set (Dormann, 2007). Models that are not tailored

to a species of interest may capture correlates of range limits, rather

than factors truly limiting distributions, and can make qualitatively

different predictions from models based on species-specific expertise

(Thorne et al., 2013). The validation of predictions of range change

based on higher quality models for individual species remains neces-

sary. Multispecies modelling exercises may often fail to identify which

species will show substantial range shifts and where such shifts will

occur (Scherrer, Massy, Meier, Vittoz, & Guisan, 2017). Unfortunately,

it is this information that would be most useful for informing prioritiza-

tion decisions surrounding the allocation of resources among species

and locations (Sinclair et al., 2010). We found that realistic modelling

strategies expected to improve performance across species, such as

including land use covariates, were insufficient to align predicted and

observed rankings of species by range loss and change in range size.

Our results suggest that predictive errors did not arise simply from

extrapolation in climate space, and that neither range expansion nor

contraction was predicted more reliably than the other. We found that

model ensembles often struggled to predict occupancy correctly at

routes that were intermediate in multivariate climatic distance from

each species’ historically occupied routes (Figure 4; see Supporting

Information Methods); the routes at intermediate climatic distances

included many of those where a change in occupancy was observed

(Supporting Information Figure S10). This pattern suggests that errors

largely arose not from extrapolation, but rather in potentially marginal

conditions, where a complex interplay between abiotic and biotic

factors, phenotypic plasticity, and dispersal patterns shapes observed

occupancy. The inability of our models to identify where range expan-

sion and contraction occurred also translated into an inability to predict

the overall magnitude and direction of range shifts (Figure 3). Previous

work has suggested that models may overestimate vulnerability and be

more accurate for predicting range gain than range loss (Schwartz,

2012), but our results showed poor performance at predicting both

expansion and contraction (Figure 2). Models had lower performance

for declining species and those with smaller ranges (Supporting Infor-

mation Figure S11). Our work also supports the importance of model

calibration and suggests potential interactions between calibration and

prevalence, because using the optimal calibration for each time period

improved rankings of range change for common species (Supporting

Information Figure S7).

The lack of agreement between observed and predicted vulnerabil-

ity is of particular concern because multiple attributes of our study

should have led to an optimistic view of the utility of correlative SDMs,

including: (a) basing our work on high-quality presence–absence data

collected via standardized methods, which is generally more accurate

FIGURE 2 Distribution model predictions were less accurate for
routes where a species was observed to have gained or lost
occupancy, compared with routes where a species was always or
never present. (a) Across all species and routes, those that were
gained or lost were often predicted to be always or never

occupied. (b) Boxplots showing variation among species in the
mean change in continuous predictions for routes that were
gained, lost, always or never occupied. (c) Boxplots showing
variation among species in the proportion of routes in each
observed category that were correctly classified. All summaries are
based only on predictions to validation routes within the
geographically restricted area, so distant routes that were never
occupied were not included. Model estimation included absences
from the conterminous U.S.A
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than basing models on presence-only data (Boitani et al., 2011;

Brotons, Thuiller, Ara�ujo, & Hirzel, 2004); (b) predicting presence–

absence, which can be easier than predicting abundance (Bahn &

McGill, 2013); (c) excluding species with < 30 historical presence

records (Wisz et al., 2008); (d) focusing on a taxonomic group with high

dispersal capacity should have reduced the time-lag in species

responses, enhancing alignment between predictions and observations

(Zurell, Jeltsch, Dormann, & Schr€oder, 2009), although lags also reflect

avian responses to vegetative communities (Yackulic & Ginsberg,

2016); (e) basing models on land use and climate data from the histori-

cal and recent periods, thereby avoiding the uncertainties associated

with future projections (Northrop & Chandler, 2014); and (f) including

validation routes in model estimation, so that validation was in time

only, rather than in both space and time. Each of these characteristics

should have favoured reliable model predictions.

Our results highlight a striking incongruity between models’

excellent discrimination ability and poor capacity to predict range

change. Models both failed to anticipate observed changes and pre-

dicted change where none was observed. We designed our methods

to reflect approaches often used in multi-taxa studies, although we

summarized climate data over 4 years, rather than the typical 30-

year period. The implications of this decision could be explored fur-

ther, but standard performance criteria indicated that continental

climatic patterns during those 4 years did allow models to discrimi-

nate between species’ presences and absences. Our models

appeared to have high transferability, because discrimination per-

formance remained high during the validation time period. However,

the low reliability of predicted range expansion and contraction over

a 35-year historical period should caution against the uncritical use

of SDMs to quantify relative risk and vulnerability among species, in

the context of both ongoing climate change and for risk assessment

among potential invasive species.

We suggest that ecological modellers and conservation practi-

tioners must re-evaluate how best to approach multispecies vulnerabil-

ity and risk assessments under climate and land use change. In

particular, more attention must be given to performance assessment

designs that capture accuracy and bias along the dimensions of

intended use (Ara�ujo & Guisan, 2006; Loiselle et al., 2003; Rapacciuolo

et al., 2012). Studies aimed at validating SDMs in the context of risk and

vulnerability should focus explicitly on the quality of predictions at loca-

tions where occupancy status changed. The type of validation we apply

here should be used to evaluate more advanced modelling methods,

including those that account for spatial autocorrelation (Dormann et al.,

2007) and patterns of species co-occurrence (Kissling et al., 2012).

Dynamic occupancy models explicitly estimate colonization and extinc-

tion and could improve predictions compared with static SDMs

(Naujokaitis-Lewis & Fortin, 2016; Yackulic, Nichols, Reid, & Der, 2015).

In addition, trait-based approaches may be useful for identifying vulner-

able species (Pearson et al., 2014) and, when available, data on spatio-

temporal variation in demography could improve predictions of range

change (Merow et al., 2014). Future work should evaluate whether life

history and natural history traits can reliably predict species’ sensitivity

to climate and other environmental factors, because models that inte-

grate these relationships can derive spatial predictions of distributional

change (Brown et al., 2014; Evans et al., 2016). It will be crucial to vali-

date whether existing and emerging modelling methods effectively

identify both the species that should receive conservation priority and

the locations where range contraction and expansion are anticipated.

FIGURE 3 The direction and distance of predicted range shifts (gold arrows) did not align well with the observed change in the
geographical centre of occupied validation routes (blue arrows). The origin of each arrow set represents the geographical centre of occupied
validation routes during the historical period for a particular species. Results are based on predictions to the 512 validation routes, from
models estimated from data throughout the conterminous U.S.A. with the covariate set including annual climate and land use. See
Supporting Information Figure S8 for results with geographically restricted estimation and validation and all covariate sets
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Identification of the taxa that are most sensitive to climate change,

in terms of either population declines or invasion risk, should increase

both the efficiency and the efficacy of conservation and management.

Our study highlights how one of the primary tools used in climate

change impact assessments could not reliably predict relative risk and

vulnerability to distributional changes. Correlative SDMs have been

criticized and questioned (Evans et al., 2016; McMahon et al., 2011;

Pearson & Dawson, 2003), but may be considered the only available or

practical tools for deriving spatial information about potential future

distributions of many taxa, particularly those for which only presence

information is available. The hope for these models is that they can

provide actionable information that can complement other sources of

information available to decision-makers. Our work raises the question

of whether these tools effectively inform priority setting and whether

species risk and vulnerability ranks derived from correlative SDMs can

improve conservation and management planning under climate change.

Indeed, models showed poor performance in precisely the areas of

environmental and geographical space that would be of greatest inter-

est: those areas where range contraction or expansion occurred.
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FIGURE 4 Changes in continuous ensemble predictions at validation routes relative to changes in climatic Mahalanobis distance between
the historical (start of arrow) and recent (arrowhead) time periods for nine example species. Purple arrows correspond to routes at which
occupancy was correctly predicted during both time periods; orange arrows correspond to routes at which binary predictions were wrong
during one or both periods. Horizontal lines correspond to the cut-off used to threshold predictions. Selected species differed in predicted
and observed vulnerability (Supporting Information Figure S9). A common pattern was for model predictions to be less accurate at interme-
diate Mahalanobis distance for each species, which often included routes at which range expansion or contraction occurred (Supporting
Information Figure S10). Results are shown for a model set that included only climate covariates
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